Classical Structures, MUBs, and Pretty Pictures

$| {\rm Bob \ Coecke} \rangle + | {\rm {\bf Ross \ Duncan}} \rangle \\ {\rm Oxford \ University \ Computing \ Laboratory}$

Categories Logic and Physics

9 January 2008

Motivation

- Quantum observables may be incompatible: position/momentum, polarisation, spin ...
- In traditional quantum logic approaches these observables are simply *incomparable* in the lattice.
- However if one wants to *compute* with quantum mechanics we need know how these observables relate to each other.

No Cloning? No Deleting?

Quanutm physics doesn't like copying or deleting:

Concrete version: There are no quantum operations which can copy or erase non-orthogonal quantum states. [Wooters and Zurek, 1982; Pati and Braunstein, 2000]

Abstract Version: If a \dagger -compact category \mathcal{C} has natural transformations

$$\delta: - \Rightarrow - \otimes -$$

$$\epsilon: - \Rightarrow I$$

then $\mathcal{C}(A, A) \cong \mathcal{C}(I, I)$. [Abramsky, 2005].

Classical Objects

Classical Objects were introduced by Coecke and Pavlovic to axiomatise exactly what is means to be clonable and deletable – these properties are taken to be the definition of classicality.

In a \dagger -category C, a triple (A, δ, ϵ) is called a *classical object* if :

- $\delta: A \to A \otimes A$ and $\epsilon: A \to I$ form a cocommutative comonoid;
- $\delta^{\dagger}: A \otimes A \to A$ and $\epsilon^{\dagger}: I \to A$ form a commutative monoid;
- they jointly satisfy the special frobenius condition.

Classical Objects

Represent maps constructed from δ and ϵ as graphs built up from:

Algebraic Laws

Comonoid laws:

(And their duals, the monoid laws)

Algebraic Laws

Special Frobenius laws:

Spider Theorem

Theorem 1. Any map constructed by composing δ and ϵ , and their adjoints, is uniquely determined by the number of inputs and outputs.

Therefore the graphical calculus for one classical object is rather uninteresting.

Cloning

Consider the map:

$$\delta_Z: Q \to Q \otimes Q :: |i\rangle \mapsto |ii\rangle$$

 δ_Z is the *cloning* map for the basis $|0\rangle$, $|1\rangle$.

Obviously δ_Z is cannot clone all states:

$$\delta_Z |+\rangle = \delta_Z (|0\rangle + |1\rangle) = |00\rangle + |11\rangle$$

However, since quantum states are indistinguishable upto global phase the vectors $e^{i\alpha} |0\rangle$ and $e^{i\beta} |1\rangle$, are also cloned, when viewed as quantum states; hence can view δ as fixing an observable i.e. an axis of the Bloch sphere.

Deleting

Q: How to "erase" a quantum state $|\psi\rangle$ known to be in some given basis?

A: Use a measurement which gives no information about the existing state — i.e measurement in a basis $\{b_i\}$ such that

$$\begin{aligned} |\langle b_i | \psi \rangle| &= |\langle b_j | \psi \rangle| \\ \Rightarrow & |\langle b_i | a_k \rangle| &= |\langle b_j | a_k \rangle| \\ \Rightarrow & |\langle b_i | a_k \rangle| &= \frac{1}{\sqrt{d}} \text{ (in finite dim.)} \end{aligned}$$

Hence the idea of *Mutually Unbiased Bases* arise very naturally from the idea of *deleting* a classical value embedded in a quantum state space. If we take the basis $\left|0\right\rangle,\left|1\right\rangle$ as the "classical" basis then the maps

$$\epsilon_Z^{\alpha}: Q \to I :: |0\rangle + e^{i\alpha} |1\rangle \mapsto 1$$

give a uniform erasing of the Z-basis for every value of α .

However if we compose ϵ_Z^{α} with δ_Z :

$$(\mathrm{id}\otimes\epsilon_Z^{\alpha})\circ\delta_Z=Z_{-\alpha}=\left(\begin{array}{cc}1&0\\0&e^{-i\alpha}\end{array}\right)$$

Hence we need $\alpha = 0$ if $(Q, \delta_Z, \epsilon_Z)$ to be a classical object. (Will come back to this a bit later).

Thus, we have a classical structure:

- δ_Z is the *cloning* map for the basis $|0\rangle, |1\rangle$.
- ϵ_Z is the uniform deleting of this basis.

Together these maps describe how to embed classical data into the quantum state space.

Another Classical Structure

Can equally well use the X basis to define a classical structure:

$$\delta_X : \begin{cases} |+\rangle \mapsto |++\rangle \\ |-\rangle \mapsto |--\rangle \end{cases} \quad \epsilon_X : \sqrt{2} |0\rangle \mapsto 1$$

These obey all the same algebraic laws as δ_Z, ϵ_Z .

Relating the X-Structure and the Z-Structure

These two structures enjoy a very special relationship:

• $\sqrt{2} |0\rangle = \epsilon_X^{\dagger};$

•
$$\delta_Z \epsilon_X^{\dagger} = \delta_Z |0\rangle = |00\rangle = \epsilon_X^{\dagger} \otimes \epsilon_X^{\dagger};$$

• $\sqrt{2}\left|+\right\rangle = \epsilon_{Z}^{\dagger}$

•
$$\delta_X \epsilon_Z^{\dagger} = \delta_X \ket{+} = \ket{++} = \epsilon_Z^{\dagger} \otimes \epsilon_Z^{\dagger}$$

Don't read this: In fact, by choosing a different ϵ one could have the same relationships between any pair from X, Y, or Z bases.

Cloning Laws:

Bialgebra Law:

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra: every equation has a (hidden) scalar factor. Call this structure a *scaled bialgebra*.

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra: every equation has a (hidden) scalar factor. Call this structure a *scaled bialgebra*.

Scaled Bialgebra Laws

Therefore, the scaled bialgebra is in fact a *scaled Hopf algebra*, whose antipode is the identity times the dimension of the underlying space.

Temporality?

We have the following equation:

Temporality?

Hence the following is well defined:

Unlike usual logic gate notation, both vertical and horizontal lines have the same meaning.

Representing Quantum Logic Gates (1)

$$\wedge X = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right) = \left(\begin{array}{r} \bullet & \bullet \\ \bullet & \bullet \\$$

Example:
$$3 \times \wedge X =$$
swap

The Hadamard Map

The Hadamard map
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 enjoys a number of useful

properties:

• Self adjointness: $H = H^{\dagger}$; and unitarity: HH = id;

• The Hadamard exchanges the X and Z bases.

Hence:

$$\delta_X = (H \otimes H) \delta_Z H \qquad \epsilon_X = \epsilon_Z H$$

Hadamard as a Mediating Map

We can define the red classical structure in terms of H and the green structure:

We can immediately derive a law for changing the colour of dots by introducing H boxes – in fact this gives a general "colour duality".

Representing Quantum Logic Gates (2)

$$\wedge Z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \blacksquare$$

Preparing a 1D-Cluster State

The cluster state can be prepared by applying a $\wedge Z$ operation between pairs of qubits in the $|+\rangle$ state:

Preparing a 1D-Cluster State

Alternatively, the cluster state can be prepared by fusion of states of the form $|0+\rangle + |1-\rangle$. Recalling that δ_Z^{\dagger} is the fusion operation, this method of preparation can be represented as:

Preparing a 1D-Cluster State

By the spider law, these are equivalent:

Incorporating Phases

Let $\alpha \in (0, 2\pi)$; consider the maps:

$$Z_{\alpha} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \bigcirc$$
$$X_{\alpha} = HZ_{\alpha}H = \bigcirc$$

Incorporating Phases

General unitary U

Proposition 2. If U is a unitary on \mathbb{C}^2 there exist α, β, γ such that $U = Z_{\alpha} X_{\beta} Z_{\gamma}$.

Here is (part of) a measurement based program to compute this:

General unitary \boldsymbol{U}

General unitary \boldsymbol{U}

How do phases interact?

"Negation"

Representing Controlled Phase

Among the most important quantum algorithms, the quantum fourier transform is a key stage of factoring.

$$|j_0 j_1 \cdots j_n\rangle \mapsto (|0\rangle + e^{2\pi i \alpha_0} |1\rangle)(|0\rangle + e^{2\pi i \alpha_1} |1\rangle) \cdots (|0\rangle + e^{2\pi i \alpha_n} |1\rangle)$$

where $\alpha_k = 0.j_k \cdots j_n = \sum_{l=k}^n j_l/2^k$
For 2 qubits:

 $|00\rangle \mapsto (|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \qquad |10\rangle \mapsto (|0\rangle + e^{i\pi} |1\rangle)(|0\rangle + |1\rangle)$ $|01\rangle \mapsto (|0\rangle + e^{i\pi/2} |1\rangle)(|0\rangle + e^{i\pi} |1\rangle) \qquad |11\rangle \mapsto (|0\rangle + e^{i3\pi/2} |1\rangle)(|0\rangle + e^{i\pi} |1\rangle)$

which is the correct result! YAY!

Conclusions

- Pairs of incompatible observables form a Hopf algebra-like structure.
- This structure captures a fundamental aspect of quantum mechanics.
- The axioms are sufficiently strong to derive the properties of quantum logic gates and prove the correctness of important quantum algorithms.

Ongoing Work

- Relating the general theory of MUBs to the underlying classical operations;
- Graphical characterisations of multipartite entangled states;
- Flow and GFlow?
- Formal properties:
 - Rewriting: Confluence? Termination?
 - Mechanisation (in progress with Lucas Dixon)
 - Induction principles for reasoning about graphical rewriting?
 - Model-theoretic completeness?