Classical Structures, MUBs, and Pretty Pictures

\mid Bob Coecke $\rangle+\mid$ Ross Duncan \rangle
Oxford University Computing Laboratory

Motivation

- Quantum observables may be incompatible: position/momentum, polarisation, spin ...
- In traditional quantum logic approaches these observables are simply incomparable in the lattice.
- However if one wants to compute with quantum mechanics we need know how these observables relate to each other.

No Cloning? No Deleting?

Quanutm physics doesn't like copying or deleting:
Concrete version: There are no quantum operations which can copy or erase non-orthogonal quantum states. [Wooters and Zurek, 1982; Pati and Braunstein, 2000]

Abstract Version: If a \dagger-compact category \mathcal{C} has natural transformations

$$
\begin{array}{r}
\delta:-\Rightarrow-\otimes- \\
\epsilon:-\Rightarrow I
\end{array}
$$

then $\mathcal{C}(A, A) \cong \mathcal{C}(I, I)$. [Abramsky, 2005].

Classical Objects

Classical Objects were introduced by Coecke and Pavlovic to axiomatise exactly what is means to be clonable and deletable these properties are taken to be the definition of classicality. In a \dagger-category \mathcal{C}, a triple (A, δ, ϵ) is called a classical object if :

- $\delta: A \rightarrow A \otimes A$ and $\epsilon: A \rightarrow I$ form a cocommutative comonoid;
- $\delta^{\dagger}: A \otimes A \rightarrow A$ and $\epsilon^{\dagger}: I \rightarrow A$ form a commutative monoid;
- they jointly satisfy the special frobenius condition.

Classical Objects

Represent maps constructed from δ and ϵ as graphs built up from:

$$
\epsilon^{\dagger}=
$$

Algebraic Laws

Comonoid laws:

(And their duals, the monoid laws)

Algebraic Laws

Special Frobenius laws:

Spider Theorem

Theorem 1. Any map constructed by composing δ and ϵ, and their adjoints, is uniquely determined by the number of inputs and outputs.

Therefore the graphical calculus for one classical object is rather uninteresting.

Cloning

Consider the map:

$$
\delta_{Z}: Q \rightarrow Q \otimes Q::|i\rangle \mapsto|i i\rangle
$$

δ_{Z} is the cloning map for the basis $|0\rangle,|1\rangle$.
Obviously δ_{Z} is cannot clone all states:

$$
\delta_{Z}|+\rangle=\delta_{Z}(|0\rangle+|1\rangle)=|00\rangle+|11\rangle
$$

However, since quantum states are indistinguishable upto global phase the vectors $e^{i \alpha}|0\rangle$ and $e^{i \beta}|1\rangle$, are also cloned, when viewed as quantum states; hence can view δ as fixing an observable i.e. an axis of the Bloch sphere.

Deleting

Q: How to "erase" a quantum state $|\psi\rangle$ known to be in some given basis?

A: Use a measurement which gives no information about the existing state - i.e measurement in a basis $\left\{b_{i}\right\}$ such that

$$
\begin{aligned}
\left|\left\langle b_{i} \mid \psi\right\rangle\right| & =\left|\left\langle b_{j} \mid \psi\right\rangle\right| \\
\Rightarrow \quad\left|\left\langle b_{i} \mid a_{k}\right\rangle\right| & =\left|\left\langle b_{j} \mid a_{k}\right\rangle\right| \\
\Rightarrow \quad\left|\left\langle b_{i} \mid a_{k}\right\rangle\right| & =\frac{1}{\sqrt{d}} \text { (in finite dim.) }
\end{aligned}
$$

Hence the idea of Mutually Unbiased Bases arise very naturally from the idea of deleting a classical value embedded in a quantum state space.

If we take the basis $|0\rangle,|1\rangle$ as the "classical" basis then the maps

$$
\epsilon_{Z}^{\alpha}: Q \rightarrow I::|0\rangle+e^{i \alpha}|1\rangle \mapsto 1
$$

give a uniform erasing of the Z-basis for every value of α.

ε

$$
\varepsilon_{\alpha}
$$

However if we compose ϵ_{Z}^{α} with δ_{Z} :

$$
\left(\mathrm{id} \otimes \epsilon_{Z}^{\alpha}\right) \circ \delta_{Z}=Z_{-\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-i \alpha}
\end{array}\right)
$$

Hence we need $\alpha=0$ if ($Q, \delta_{Z}, \epsilon_{Z}$) to be a classical object. (Will come back to this a bit later).

Thus, we have a classical structure:

- δ_{Z} is the cloning map for the basis $|0\rangle,|1\rangle$.
- ϵ_{Z} is the uniform deleting of this basis.

Together these maps describe how to embed classical data into the quantum state space.

Another Classical Structure

Can equally well use the X basis to define a classical structure:

$$
\delta_{X}:\left\{\begin{array}{l}
|+\rangle \mapsto|++\rangle \\
|-\rangle \mapsto|--\rangle
\end{array} \quad \epsilon_{X}: \sqrt{2}|0\rangle \mapsto 1\right.
$$

These obey all the same algebraic laws as δ_{Z}, ϵ_{Z}.

$$
\epsilon_{X}^{\dagger}=
$$

Relating the X-Structure and the Z-Structure

These two structures enjoy a very special relationship:

- $\sqrt{2}|0\rangle=\epsilon_{X}^{\dagger}$;
- $\delta_{Z} \epsilon_{X}^{\dagger}=\delta_{Z}|0\rangle=|00\rangle=\epsilon_{X}^{\dagger} \otimes \epsilon_{X}^{\dagger}$;
- $\sqrt{2}|+\rangle=\epsilon_{Z}^{\dagger}$
- $\delta_{X} \epsilon_{Z}^{\dagger}=\delta_{X}|+\rangle=|++\rangle=\epsilon_{Z}^{\dagger} \otimes \epsilon_{Z}^{\dagger}$

Don't read this: In fact, by choosing a different ϵ one could have the same relationships between any pair from X, Y, or Z bases.

Bialgebraic Laws for Mutually Unbiased Observables

Cloning Laws:

Bialgebraic Laws for Mutually Unbiased Observables

Bialgebra Law:

Bialgebraic Laws for Mutually Unbiased Observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra: every equation has a (hidden) scalar factor. Call this structure a scaled bialgebra.

Bialgebraic Laws for Mutually Unbiased Observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra: every equation has a (hidden) scalar factor. Call this structure a scaled bialgebra.

Scaled Bialgebra Laws

- $\quad .=1$

A Useful Lemma

θ

A Useful Lemma

\vee

A Useful Lemma

ϑ

A Useful Lemma

A Useful Lemma

$\theta \Delta$

A Useful Lemma

A Useful Lemma

A Useful Lemma

A Useful Lemma

Therefore, the scaled bialgebra is in fact a scaled Hopf algebra, whose antipode is the identity times the dimension of the underlying space.

Temporality?

We have the following equation:

Temporality?

Hence the following is well defined:

Unlike usual logic gate notation, both vertical and horizontal lines have the same meaning.

Representing Quantum Logic Gates (1)

$$
\wedge X=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=
$$

Example: $3 \times \wedge X=$ swap

The Hadamard Map

The Hadamard map $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ enjoys a number of useful properties:

- Self adjointness: $H=H^{\dagger}$; and unitarity: $H H=\mathrm{id}$;

- The Hadamard exchanges the X and Z bases.

Hence:

$$
\delta_{X}=(H \otimes H) \delta_{Z} H \quad \epsilon_{X}=\epsilon_{Z} H
$$

Hadamard as a Mediating Map

We can define the red classical structure in terms of H and the green structure:

We can immediately derive a law for changing the colour of dots by introducing H boxes - in fact this gives a general "colour duality".

Representing Quantum Logic Gates (2)

$$
\wedge Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=
$$

Example: $\wedge Z \circ \wedge Z=\mathrm{id}$

Preparing a 1D-Cluster State

The cluster state can be prepared by applying a $\wedge Z$ operation between pairs of qubits in the $|+\rangle$ state:

Preparing a 1D-Cluster State

Alternatively, the cluster state can be prepared by fusion of states of the form $|0+\rangle+|1-\rangle$. Recalling that δ_{Z}^{\dagger} is the fusion operation, this method of preparation can be represented as:

Preparing a 1D-Cluster State

By the spider law, these are equivalent:

Incorporating Phases

Let $\alpha \in(0,2 \pi)$; consider the maps:

$$
\begin{gathered}
Z_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right)= \\
X_{\alpha}=H Z_{\alpha} H=
\end{gathered}
$$

Incorporating Phases

$$
Z_{\alpha} \circ Z_{\beta}=Z_{\alpha+\beta}
$$

Generalised Spider Law

General unitary U

Proposition 2. If U is a unitary on \mathbb{C}^{2} there exist α, β, γ such that $U=Z_{\alpha} X_{\beta} Z_{\gamma}$.

Here is (part of) a measurement based program to compute this:

General unitary U

$$
=Z_{\alpha} X_{\beta} Z_{\gamma}
$$

How do phases interact?

$$
Z_{\alpha}|0\rangle=|0\rangle \quad Z_{\alpha}|1\rangle=e^{i \alpha}|1\rangle=|1\rangle
$$

How do phases interact?

How do phases interact?

"Negation"

$$
\begin{aligned}
& X_{\pi}=X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad::\left\{\begin{array}{l}
|0\rangle \mapsto|1\rangle \\
|1\rangle \mapsto|0\rangle
\end{array}\right. \\
& Q \xrightarrow{\delta} Q \otimes Q \\
& X\left|\begin{array}{l}
\downarrow \\
Q \\
{ }_{\delta} \\
\\
\otimes
\end{array}\right| X \otimes X
\end{aligned}
$$

"Negation"

"Negation"

$$
X::|0\rangle+e^{i \alpha}|1\rangle \mapsto e^{i \alpha}|1\rangle+|0\rangle=|0\rangle+e^{-i \alpha}|1\rangle
$$

Representing Controlled Phase

Example: Quantum Fourier Transform

Among the most important quantum algorithms, the quantum fourier transform is a key stage of factoring.

$$
\left|j_{0} j_{1} \cdots j_{n}\right\rangle \mapsto\left(|0\rangle+e^{2 \pi i \alpha_{0}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i \alpha_{1}}|1\rangle\right) \cdots\left(|0\rangle+e^{2 \pi i \alpha_{n}}|1\rangle\right)
$$

where $\alpha_{k}=0 . j_{k} \cdots j_{n}=\sum_{l=k}^{n} j_{l} / 2^{k}$
For 2 qubits:

$$
\begin{aligned}
& |00\rangle \mapsto(|0\rangle+|1\rangle)(|0\rangle+|1\rangle) \\
& |10\rangle \mapsto\left(|0\rangle+e^{i \pi}|1\rangle\right)(|0\rangle+|1\rangle) \\
& |01\rangle \mapsto\left(|0\rangle+e^{i \pi / 2}|1\rangle\right)\left(|0\rangle+e^{i \pi}|1\rangle\right) \\
& |11\rangle \mapsto\left(|0\rangle+e^{i 3 \pi / 2}|1\rangle\right)\left(|0\rangle+e^{i \pi}|1\rangle\right)
\end{aligned}
$$

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

which is the correct result! YAY!

Conclusions

- Pairs of incompatible observables form a Hopf algebra-like structure.
- This structure captures a fundamental aspect of quantum mechanics.
- The axioms are sufficiently strong to derive the properties of quantum logic gates and prove the correctness of important quantum algorithms.

Ongoing Work

- Relating the general theory of MUBs to the underlying classical operations;
- Graphical characterisations of multipartite entangled states;
- Flow and GFlow?
- Formal properties:
- Rewriting: Confluence? Termination?
- Mechanisation (in progress with Lucas Dixon)
- Induction principles for reasoning about graphical rewriting?
- Model-theoretic completeness?

